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Direct solvers currently dominate commercial finite element structural software,

but do not scale well in the fine granularity regime targeted by emerging parallel pro-
cessors. Substructure based iterative solvers -- often called also domain decomposition

algorithms -- lend themselves better to parallel processing, but must overcome several
obstacles before earning their place in general purpose structural analysis programs.
One such obstacle is the solution of systems with many or repeated right hand sides.

Such systems arise, for example, in multiple load static analyses and in implicit linear

dynamics computations. Direct solvers are well-suited for these problems because after

the system matrix has been factored, the multiple or repeated solutions can be obtained

through relatively inexpensive forward and backward substitutions. On the other hand,

iterative solvers in general are ill-suited for these problems because they often must

restart from scratch for every different right hand side. In this paper, we present a

methodology for extending the range of applications of domain decomposition methods

to problems with multiple or repeated right hand sides. Basically, we formulate the

overall problem as a series of minimization problems over K-orthogonal and supple-

mentary subspaces, and tailor the preconditioned conjugate gradient algorithm to solve
them efficiently. The resulting solution method is scalable, whereas direct factorizatlon

schemes and forward and backward substitution algorithms are not. We illustrate the

proposed methodology with the solution of static and dynamic structural problems,

and highlight its potential to outperform forward and backward substitutions on paral-

lel computers. As an example, we show that for a linear structural dynamics problcm

with 11640 degrees of freedom, every time-step beyond time-step 15 is solved in a single
iteration and consumes 1.0 second on a 32 processor iPSC-860 system; for the same

problem and the same parallel processor, a pair of forward/backward substitutions at

each step consumes 15.0 seconds ....



1. Introduction

Direct solvers currently dominate commercial finite element structural soft-

ware, essentially because: (a) they are robust and reliable, (b) they axe versatile,

(c) they work well with secondary storage, and (d) they usually outperform the

class of iterative algorithms that were popular when these codes were originally

developed. However, with the advent of parallel processing, alternatives to direct

solvers must be researched because factorization algorithms applied to systems

arising from the finite element formulation of structural problems are not scalable

-- that is, their performance does not necessarily increase with the number of

processors. This lack of scalability is illustrated by the following analysis.

Most parallel skyline solvers that have been recently reported in the literature

are closely related to the parallel active column equation solver presented in [1].

In general, clusters of columns are distributed across the processors in a block

wrap fashion (Fig.l). At each step k of the factorization, column k is broadcast

to all processors and the entries of row k are updated in parallel.
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Fig. 1. Parallel skyline solver



Usually, after the meshnodesarerenumbered for optimal storage, the skyline

structure becomes close to a banded one so that for all computational complexity

purposes, one can reasonably assume that the system matrix is a banded one

(Fig. 2).

b

b

Fig. 2. Banded computational model

Let b, Sa, Si and Np denote respectively the system semi-bandwidth, the

64-bit floating-point arithmetic peak performance of a single processor of the

parallel machine, the peak interconnect speed of that machine measured in bytes

per second, and its number of processors. We assume that all real data are stored

in 8-byte words. At each step of the factorization process, the computational and

communication parallel time of the factorization algorithm can be evaluated a._

follows:
5 2

Tfactar -- Np X Sa

8xb
Ttransmit --

Si

(1)

Obviously, the best parallel performance is obtained when Ttr_,,mlt << Tfacto,-_

Therefore, the saturation or balance condition is given by:

Ttransmif _-- Tfactor (2)
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Given a structural problem and a parallel processor, the above saturation condi-

tion holds if and only if:

S,, (3)
b = SxNpx 5"--/-

Table 1 reports the values of the system semi-bandwidth that meet the saturation

condition for today's emerging parallel processors. Clearly, b - 21942 and b =

60262 are unrealistic values of the matrix semi-bandwidth. For example, most

finite element models related to aerospace structures have a semi-bandwidth that

varies between 300 and 2000. Moreover, problems with a semi-bandwidth as large

as 21942 or 60262 entail memory and CPU requirements that overwhelm even the

largest of the currently available supercomputing resources.

Table 1

Saturation condition - semi-bandwidth values

Paralld processor Np oc_ Si b

iPSC-860 128 60 Mflops 2.8 Mbytes/sec 21942

KSR-1 256 20 Mflops 8.5 Mbytes/sec 4818

CM-5 512 128 Mflops 8.7 Mbytes/sec 60262

If the saturation condition (2) is enforced for a fixed problem characterized by

its semi-bandwidth b, the number of "useful" processors -- that is, the number

of processors beyond which any additional processor can only slow down the

computations -- can be computed from Eqs. (1-2) as follows:

b s, (4)
g v = -_Xs'-" _

Table 2 reports for current massively parallel systems the number of useful proces-

sors processors for b = 1500. This value of the semi-bandwidth is representative

of today's large-scale problems in aerospace structures.

Table 2

Number of useful processors - b = 1500

Parallel processor N v S_ Si N v N_ /Nv

iPSC-860 128 60 Mflops 2.8 Mbytes/sec 9 7.0 %

KSR-1 256 20 Mflops 8.5 Mbytes/sec 80 31.2 %

CM-5 512 128 Mflops 8.7 Mbytes/sec 13 2.5 %
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Clearly, the relative number of processorsthat arekept busy by direct solverson

today's massively parallel processors is small.

In summary, the above analysis shows that parallelism in direct solvers is

fimited by the bandwidth and not by the size of the problem, and that direct

solvers are not scalable on current parallel hardware.

REMARK 1.1. Sub-block decomposition strategies for parallel skyline factor-

ization could provide slightly higher performance on parallel machines than dis-

tributed column methods [2]. However, the conclusions drawn above hold also

for these mapping schemes.

REMARK I._. For some large-scale problems, sparse direct solvers can be faster

than skyline ones. However, it has often been reported that sparse direct solvers

are even less amenable to parallel processing than skyline ones, even on shared

memory parallel processors (see, for example, [3]).

On the other hand, substructure based iterative algorithms -- known also as

domain decomposition methods [4] -- are known to have better parallel scalability

properties. Some of these algorithms also compare favorably with direct solvers

even on ill-conditioned structural problems diseretized with shell and beam el-

ements [5, 6]. However, these semi-iterative algorithms must overcome several

obstacles before they can be adopted by structural analysis program developers.

One such obstacle is the solution of systems with many or repeated right hand

sides. Such systems arise, for example, in multiple load static analyses, in implicit

linear dynamics, in eigenvalue problems, and in many other structural computa-

tions. Direct solvers are well-suited for these problems because after the system

matrix has been factored, the multiple or repeated solutions can be obtained

through relatively inexpensive forward and backward substitutions. On the other

hand, iterative solvers are in general ill-suited for these problems because they

often must restart from scratch for every different right hand side.

In this paper, we present a methodology for extending substructure based

iterative algorithms to problems with many or repeated right hand sides. We for-

mulate the overall problem as a series of consecutive minimization problems over

K-orthogonal and supplementary subspac_, and tailor the preconditioned con-

jugate gradient (PCG) algorithm to solve them efficiently. Basically for each new

right hand side, we first compute an optimal startup solution via the projection

of the new interface problem onto an agglomerated Krylov space associated with

previous right hand sides. Next, we improve this solution with an accelerated

PCG algorithm where all search directions are orthogonalized with respect to the

Krylov subspaces generated by previous right hand sides. The resulting solution



algorithm is scalable,whereasforward and backwardsubstitution algorithms are
not. Its convergencerate improveswith the number of searchdirections that are
stored, and therefore its performancedependson the amount of availablemem-
ory. Howeverfor most structural problems, the new solution algorithm entails
only a fraction of the storagerequirementsof direct solvers.Weillustrate the pro-
posedmethodology with the solution of static and dynamic structural problems,
and highlight its potential to outperform forward and backwardsubstitutions on
massivelyparallel computers. As an example, we show that for a linear struc-
tural dynamics problem with 11640degreesof freedom,every time-step beyond
time-step 15 is solvedin a single iteration and consumes 1.0 second on a 32 pro-

cessor iPSC-860 system; for the same problem and the same parallel processor,

a pair of forward/backward substitutions consumes at each step 15.0 seconds.

We hope that the proposed methodology will enhance the versatility of domain

decomposition based iterative algorithms.

2. Problem formulation and nomenclature

For the sake of clarity, we first discuss the problem and the proposed solution

methodology in the absence of any substructuring technique. In Section 4, we

highlight the role of substructuring and present the substructure based solution

algorithm.

Here, we are interested in solving iteratively the following problems:

gui = fi i = 1, ..., grhs (5)

where K, {fi}_ = 1Iv'h", and {ui}_ ==,N,,,, denote respectively the stiffness matrix

of a given structure, a set of Nrh, generalized force vectors, and the corresponding

set of Nrh, generalized displacement vectors. Such problems arise, for example,

when multiple load patterns axe applied to a structure, or when a computational

algorithm requires repeated solutions of a system of linear equations with the

same matrix but different right hand sides.

Problems (5) above can be transformed into the following minimization prob-

lems:

min Oi(u)= 1-_.uTKu - fTu i = 1, ..., g,-h, (6)

where NK is the dimension of the stiffness matrix, T_ is the set of real numbers,

and T is the transpose superscript. If each minimization problem in (6) is solved

with a PCG algorithm, the following Krylov subspaces are generated:

I,), 12) (t) _(r,)Si = {s s , ..., si , ---, _i } i = 1, ..., Nrh, (7)



wheres_k) and ri < NK denote respectively the search direction vector at iteration

k, and the number of iterations for convergence of the PCG algorithm applied to

the minimization of _i(u). Additionally, we introduce the following agglomerated

subspaces:
j=i

Si = U Sj i = 1, ..., Nrh, (8)

j=l

Let Si denote the rectangular matrix associated with Si. From the orthogo-

nality properties of the conjugate gradient method, it follows that:

STKSi = Di

where

i = 1, ..., N,-h,

Di

dq 0 0 0i di2 0 0

°

0 ". 0

0 0 di,i

(9)

However, note that in general sTKsi is not a diagonal matrix. Finally, we

define Si as the matrix whose column vectors also span the subspace Si, but are

orthogonalized with respect to the stiffness matrix K. Hence, we have:

S i KSi = Di

where

m

Di =
0

0

0

2=i

3=1

°°° 1
di_ 0 0

0 ". 0

0 0 [ti,_

(10)



3. Projection and orthogonalization

Suppose that the first problem Kux = fl has been solved in ra PCG itera-

tions, and that the NK × rl matrix $1 associated with the Krylov subspace S1 is

readily available.

Solving the second problem Ku2 -- f2 is equivalent to solving:

1

rain ¢_(_) = _ ,,_'K_ - f_
UET_NK

ff R NK is decomposed as follows:

7_N'_ = 81 • $1

dim (S_) = Nu - r,

Sl and S_ are K - orthogonal

then the solution of problem (11) can be written as:

u 2 = U 0 q-v 2

where

0 Tu° c Sl, v2_ s; and u2 Kv? = ffK_ ° = o

(11)

(12)

(13)

From Eqs. (11-13), it follows that u° is the solution of the minimization problem:

1

min _2(u) = _ uTKu - f2Tu (14)
uESt

and v2 is the solution of the minimization problem:

1

min _I'2(v)= _ vTKv- fTv
(15)

First, we consider the solution of problem (14). Since u ° C $1, there exists

a y0 C 7_ rl such that:

_o = s,y_ (16)

Substituting Eq. (16) into Eq. (14) leads to the following minimization problem:

1 yTsTKSly _ ITsT y (17)min _2(y) ----
yE'RJ 1



whose solution y0 is given by:

STK1S, yO

where

£ = sTs 
(18)

From Eq. (9), it follows that the system of equations (18) is diagonal. Hence, the

components [y2°]1 of y0 can be simply computed as follows:

[u lj- [12b (10)
dl_ j = 1, ..., rl

Next, we turn to the solution of problem (15) via a PCG algorithm. Since

the decomposition (13) requires v2 to be K-orthogonal to u °, at each iteration k,

the search directions s_ k) must be explicitly K-orthogonalized to $1. This entails

the computation of modified search directions _) as follows:

q --_- T 1

q=l

where (20)

(q)T r7 (_) (_)T r_ (q)

81 113 2 __ S2 1131

Olq -: (q)T rF (q) -- (q)T rF (q)
S I /kS 1 S 1 _S I

Except for the above modifications, the original PCG algorithm is unchanged.

In summary, once the first problem KUl -- fl has been solved in rl PCG

iterations and the NK x rl matrix $1 associated with the Krylov subspace $1 has

been stored, the second problem Ku2 = .[:2 is solved in two steps as follows:

Step 1. K is projected onto Si and the resulting diagonal problem STKSly ° :

sT f2 is trivially solved in NK floating-point operations. Next, the par-

tim solution u ° = Sly ° is formed. This partial solution u ° is an optimal

staxtup value for u2 because: (a) it minimizes uTKu/2 -- uTf2 over

$1 C "R.NK , and (b) it is inexpensive to compute. Note that the rl non-

zero entries of the diagonal matrix STKS1 are automatically computed

during the PCG solution of the first problem Kul = fl. Therefore,

these entries can be stored and need not be re-computed.

Step 2. The basic PCG algorithm is applied to the solution of Ku2 = f2 after it

is modified to: (a) accept u ° as a startup solution, and (b) orthogonalize

the search directions s_ k) and $1 with respect to K.
\
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The generalization to the caseof Nrh, right hand sides of the two-step so-

lution procedure described above goes as follows. Suppose that i* - 1 < Nrh_

consecutive problems Kui = fi, i = 1, ..., i* - 1 have been solved with a_PCG

algorithm modified as described above, and that the NK x.ri.-1 matrix_ Si---1

associated with the K-orthogonalized agglomerated Krylov subspace Si.-1 has

been stored. The i*-th problem Kui. = fi. is solved in two steps. First, K is

-- 0 "Si" - 1y0 is computedprojected onto Si--1, and an optimal staxtup solution u i. =
---T -- ---T

via the trivial solution of the diagonal system Si.-i KSi'-lY °- = Si.-ifi'. Next,
0

the PCG algorithm is applied to the solution of Kui. = fi" with u i. as a staxtup

solution, and all search directions _(6)_i- axe K-orthogonalized to Si.-1.

Clearly, the performance of the solution method proposed here depends on

the performance of the preconditloner used in the conjugate gradient algorithm.

However, it should be noted that from the decomposition (12), it follows that if

after the PCG solution of some problem indexed by 1 < i* < Nrh, the dimension

_i* of the K-orthogonalized Krylov subspace Si* becomes equal to the size of one

problem NK, the proposed solution method will converge in theory to a direct

solver. In that case, each remaining problem Kui = fi, i = i* + 1, Nrh, will be

solved directly (zero iteration) and economically as follows (see Eq. (10)):

,,, = yo i =
where

Y Ij
-

d-

i* + 1, ..., N,-h,

j = 1, ..., NK

(21)

In practice, the superconvergence behavior outlined above will be reached before

the point where ri- = NK, and each of the PCG solutions of the remaining

N,-h, - i* problems will converge in two or three iterations.

REMARK S.1. From Eqs. (11-19), it follows that if two right hand sides fi and

fi+l are proportional, the solution of the problem with right hand side fi+l is
0 -- 0

ui+l = ui+l = Siyi+l, and therefore, this solution will be found in zero iteration.

4. Primal and dual substructuring methods

Despite its elegance and simplicity, the methodology described in Sec-

tion 3 can be impractical when applied to the global solution of the problems

Kui = fi, i = 1, Nrhs. Indeed, during the PCG solution of the first few problems

10



-- that is, before superconvergence can be reached --, the cost of the orthogonal-

izations implied by Eq. (20) can offset the benefits of convergence acceleration via

the optimal startup solution and the modified search directions _i-'(k). Moreover,

storing every search direction _i,) and the corresponding matrix-vector product

K^(_) significantly increase the memory requirements of the basic PCG al-8 i

gorithm.

However, for symmetric elliptic problems, most powerful preconditioners are

based on domain decomposition [4, 5], and for such preconditioners, the CPU and

memory drawbacks outlined above become less important as discussed below.

Domain decomposition methods are essentially substructuring methods where

different solution algorithms can be applied to the local and interface problems.

In these methods, the substructures are seldom physical ones. In general, they are

obtained by partitioning the global mesh into a number of subdomains following

some specified criterion [7]. In structural mechanics, the local problems corre-

spond to the static condensation of the substructure internal degrees of freedom,

usually via a direct method, and the interface problem corresponds to the eval-

uation of the substructure interface boundary degrees of freedom, usually via a

PCG algorithm. Depending on the choice of the substructure interface unknowns,

two substructuring methods can be formulated:

1. The primal substructuring method. This is the classical substructuring

method where the structural degrees of freedom are partitioned into internal ones,

designated here by the subscript I, and interface boundary ones, designated here

by the subscript B. The substructure equations of equilibrium are given by:

K_t u_ = f_--K_BUB

s= N° s= N, s= N,

8 T

8=1 s=l 8=I

s = 1, ..., N8

(22)

where N8 denotes the number of substructures. After the internal degrees of

freedom are eliminated via static condensation, Eqs. (22) above are transformed

into the following interface problem:

8= Ns

]_ s T _,'.g -1 ._

8=1

= Ns

sT $ -1

__, f; - KIBK H f_ (23)
s=l

which can be efficiently solved with a substructure based PCG algorithm [5].

Because the interface problem (23) is written in terms of a "primal" displacement

variable uB, we refer to this substructuring method as a primal method.

11



2. The dual substructuring method. This substructuring method is based on

a variational principle [6,8]. The interface unknowns are chosen as Lagrange

multipliers representing surface tractions at the substructure interface boundaries

,k. The substructure equations of equilibrium are given by:

K'u" = f" - B'r._

,11_ N,m

___ BSu " = 0
8=1

s = 1, ..., No

(24)

where B s is the finite element matrix associated with the spatial discretization

of the Lag'range multipliers _. The substructure displacement fields u ° can be

eliminated from Eqs. (25) to obtain an interface problem written in terms of the

"dual" variables A:

#=N. 8-----No

[E B'K°+ B°r] A = E B°K°+ f° (25)
s=l s=l

where K °+ is a generalized inverse of K ° that becomes identical to K *-1 when

substructure s is non-floating[6]. The dual interface problem (25) can be also

solved efficiently with a substructure based PCG algorithm [6,8,9].

The size of the primal interface problem (23) is directly related to the number

of interface nodes, while the size of the dual interface problem (25) is directly

related to the discretization type and order of the Lag'range multipliers ,k. In

general, the size of the dual problem (25) is less or equal to the size of the primal

problem (23) [10]. Therefore, whether a primal or dual substructuring method

is chosen, the size of the interface problem is less or equal to the number of

interface nodes multiplied by the maximum number of degrees of freedom per

node. Moreover, computational efficiency in the iterative solution -- especially

on parallel processors -- dictates choosing the number of substructures such that

the number of interface nodes does not exceed 10 to 20 % of the total number of

nodes in the finite element mesh.

Therefore, the proposed methodology for solving the multiple problems

Kui = fi, i = 1, ..., Nrhs is computationally feasible when the PCG algorithm

is used in a substructuring context because:

• the additional memory requirements entailed by the storage of the search

directions _) and the matrix vector products K_I k) are proportional only

to the reduced size of the interface problem.
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• the cost of the orthogonalizations implied by Eq. (20) are negligible

compared to the cost of the forward and backward substitutions that

are required at ea_ iteration k for the evaluation of the matrix-vector

product g_-t'[g_B u(_ )] (primal method), or the matrix-vector product

K *+ [B "r A(k)] (dual method).

We have previously shown that during the solution via an iterative dual

substructuring method of a single problem Ku = f, the spectral pattern of the

governing matrix (25) causes a rapid loss of orthogonality between the computed

search directions [11,12]. This result also holds for the solution of a single problem

Ku = f via an iterative primal substructuring method with a Neumann precondi-

tioner [5]. The loss of orthogonality between the search directions has a disastrous

consequence on the convergence rate of the PCG algorithm and can be compen-

sated only by an explicit re-orthogonalization procedure that is identical to that

of F_,q. (20). In reference [12], we have shown for several large-scale structural

problems that this re-orthogonalization procedure improves significantly the con-

vergence rate of the PCG algorithm and reduces drastically its total CPU time,

without dramatically increasing its storage requirements.

Hence, the orthogonalization procedure (20) has two positive and synergistic

effects on the solution via a substructure based iterative methodology of the mul-

tiple problems Kui = fi, i = 1, ..., N,-h,: (a) when invoked to K-re-orthogonalize

the columns of $1, it accelerates the convergence of the solution of the first prob-

lem, and thus reduces the number of search directions that must be stored for

the solution of the next problem, and (b) when applied to K orthogonalize s_k)

and "Si-1, it accelerates the convergence of the i-th problem and prepares the

evaluation of the optimal startup solution of the i-th -{- 1 problem.

REMARK 4.1. In practice, the number of search directions that axe stored

for orthogonalization is determined by the memory space that is left available

after all other storage requirements of the structural analysis have been satisfied.

When only a few directions can be stored, a partial orthogonalization procedure

is performed.

Finally, it should be noted that the solution methodology proposed herein

involves essentially dot products and matrix-vector multiplications; therefore, it

scales well in the fine granularity regime targeted by emerging parallel processors,

whereas direct forward and backward substitutions do not [1].

13



5. Applications

Here, we apply the methodology described in the previous sections to the

solution of repeated systems arising from the static analysis of a stiffened wing

panel under multiple load conditions, and the linear transient analysis using an

implicit time-integration scheme of a line-pinched membrane with a circular hole.

The first problem illustrates the effect on convergence of the number of stored

search directions, and quantifies the corresponding memory requirements. The

second problem highlights the superconvergence effects of the methodology in

the presence of a large number of repeated systems, and demonstrates its parallel

scalability. The substructure based PCG method selected in both applications is

the FETI method [6,12] with the "lumped" preconditioner [12,14]. In all eases,

the convergence criterion is set to:

IIK,,,i- All2 < lO-3 (26)
I[fdl -

We report performance results on the CRAY Y-MP and the iPSC-860 supercom-

puters that demonstrate the fast convergence and computational efficiency of the

proposed methodology, and highlight its parallel scalability.

5.1. Multiple load ntatic anaIy_iJ

First, we consider the static analysis of a stiffened wing panel from the V22

tiltrotor aircraft [13]. The corresponding finite element model (Fig. 3) contains

9486 nodes, 18272 triangular shell elements with 6 d.o.f, per node, and a total

number of 56916 degrees of freedom. The panel is clamped at one end and two

different load eases are applied at the other end: a uniformly distributed bending

load perpendicular to the main plane of the panel (L1), and a similar load as

in (L1) but with a non-uniform spatial distribution. The finite element mesh is

decomposed into 16 subdomains using the Greedy algorithm [7]. The resulting

mesh partition contains 747 interface nodes. All computations are performed on

a single processor CRAY Y-MP.

14



Fig. 3. Stiffened wing panel from the V22 tiltrotor aircraft

The structural problem corresponding to load case (L1) is solved using the

basic FETI iterative method. The size of the dual interface problem is 4482.

Convergence is achieved after 359 iterations and 120 seconds CPU. For this prob

lem, the FETI code runs at 135 Mflops and requires 15.0 million 64 bit words

(MW). An optimized direct solver running at 235 Mflops requires 51 MW and

computes the solution in 199 seconds. The performance of the proposed method-

ology for load case (L2) is reported in Table 3 as a function of the number of

stored search directions. This number is expressed as a percentage of the 359

iterations computed during the iterative solution of load case (L1).

15



Table 3

Stiffened wing panel from the V22 tiltrotor aircraft

Performance of the solution method for load case (L2)

# of stored (L1) directions (% of 359) 0 20 40 60 80 100

Total memory requirements (MW) 15.0 14.9 15.6 15.3 15.3 15.3

# of iterations 370 300 230 150 90 60
CPU time for orthogonalizations (secs) 5.2 5.0 4.5 3.3 2.3 1.8

Total CPU time (secs) 124.0 100.0 77.0 51.0 30.5 20.5

The results reported in Table 3 axe in agreement with the theory presented in

Section 3. The greater is the number of stored (L1) search directions, the better

is the startup solution (17-19), the smallest is the number of iterations needed

for solving the minimization problem (15), and the fastest is the convergence of

the overall methodology. When all of the search directions generated during the

solution of problem (L1) axe stored, the solution time for problem (L2) is reduced

to less than 17% of the solution time for problem (L1). The reader can also ob-

serve that for this two load case problem, the total memory requirements of the

solution procedure is almost independent of the number of stored (L1) search di-

rections. Indeed, increasing the number of stored (L1) search directions increases

the storage requirements corresponding to the K orthogonalization of s_ _) and _1.

However, it also minimizes the number of iterations for the solution of problem

(L2), and therefore reduces the storage requirements associated with the K re-

orthogonalization of 5'2 (we recall the reader that the latter re-orthogonalization

is an intrinsic component of the FETI method that accelerates the convergence

of the PCG algorithm for a single dual interface problem (25)). In all cases, the

memory requirements of the proposed iterative solution procedure do not exceed

31% of the memory requirements of a direct skyline solver.

While load cases (L1) and (L2) are not proportional, they solicit the same

structural degrees of freedom. For this reason, we also report results for an

analysis involving load cases (L1) and L(3), where load case (L3) corresponds to

a non-uniformly distributed shearing load at the non-clamped end of the panel.

Clearly, load case (L3) excites many modes of the structure that are not excited

by load case (L1), which explains the slight degradation in performance reported

in Table 4. However, the overall conclusions drawn for the combination (L1-L2)

are shown to hold for the combination (L1-L3).
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Table 4

Stiffened wing panel from the V22 tiltrotor aircraft

Performance of the solution method for loaA case (L3)

# of stored (L1) directions (% of 359) 0 20 40 60 80 100

Total memory requirements (MW) 15.0 14.9 15.7 15.4 15.3 15.3

# of iterations 380 310 240 165 115 85

CPU time for orthogonalizations (secs) 5.5 5.4 4.9 3.8 3.1 2.6

Total CPU time (secs) 126.0 105.0 82.0 57.0 40.0 30.5

5.l& Implicit linear dynamic anal_lsis

Next, we consider the transient analysis via an implicit time-integration

scheme of a line-pinched membrane with a circular hole. The membrane is dis-

cretized in 5680 4-node elements and 11640 degrees of freedom (Fig. 4). The finite

dement mesh is partitioned into 32 subdomains. The size of the dual interface

problem is 1892 -- that is, 16.25% of the size of the global problem. The transient

analysis is carried out on a 32 processor iPSC-860 system. After all of the usual

finite element storage requirements are allocated, there is enough memory left to

store a total number of 891 search directions. This number corresponds to 47%

of the size of the dual interface problem.
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Fig. 4. Line-pinched membrane with a circular hole

The system of equations arising at the first time step is solved in 322 it-

erations using the FETI transient method [12]. After 3 time steps, 435 search

directions are accumulated (Fig. 5) and only 20 iterations are needed for solving

the fourth linear system of equations (Fig. 6). After 16 time steps, the total num-

ber of accumulated search directions is only 536 -- that is, only 28% of the size

of the dual interface problem, and superconvergence is triggered: all subsequent

time steps are solved in 2 or 3 iterations (Fig. 7) and in less than 1.0 second CPU

(Fig. S).

When a direct solver is applied to the above problem, at each time step, the

pair of forward/backward substitutions consumes 15.0 seconds on the same 32

processor iPSC-860. Therefore, the proposed solution methodology is clearly an

excellent alternative to repeated forward/backward substitutions on distributed

memory parallel processors.
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6. Conclusion

In this paper, we have presented a methodology for extending the range of

applications of domain decomposition based iterative methods to problems with

multiple or repeated right hand sides. Such problems arise, for example, in multi-

ple load static analyses, in implicit linear dynamics, in eigenvalue problems, and

in many other structural computations. We have formulated the global prob-

lem as a series of minimization problems over K-orthogonal and supplementary

subspaees, and have tailored the preconditioned conjugate gradient algorithm to

solve them efficiently. The resulting solution method is scalable in the fine gran-

ularity regime targeted by emerging parallel processors, whereas direct factor-

ization schemes and forward and backward substitution algorithms are not. We

have illustrated the proposed methodology with the solution of realistic static

and dynamic structural problems, and have highlighted its potential to outper-

form forward and backward substitutions on parallel computers. The proposed

methodology enhances the versatility of domain decomposition based iterative

algorithms.
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